Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation

Xiaohui Song*†, Longtao Huang*, Hui Xue* and Songlin Hu†‡

†Institute of Information Engineering, Chinese Academy of Sciences ‡School of Cyber Security, University of Chinese Academy of Sciences *Alibaba Group

{songxiaohui,husonglin}@iie.ac.cn,{kaiyang.hlt, hui.xueh}@alibaba-inc.com

2022.11.17 • ChongQing

2022_EMNLP

NATURAL LANGUAGE PROCESSING

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

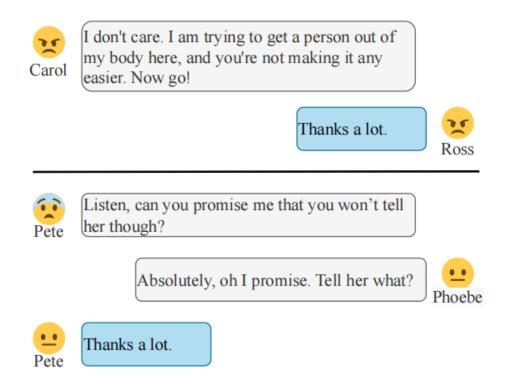
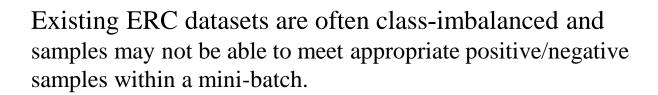


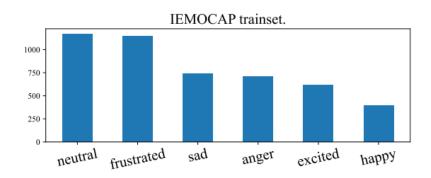
Figure 1: Examples of emotion recognition in conversation. The same utterance "Thanks a lot" can convey different emotions in different contexts.

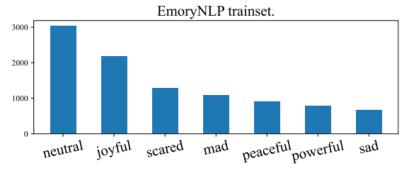
Even semantically similar utterances, the emotion may vary drastically depending on contexts or speakers.

Introduction



There are some conversations whose textual information is insufficient to distinguish emotions.





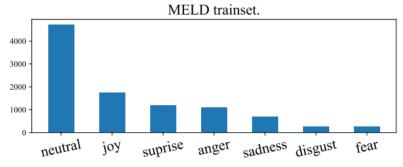


Figure 2: Emotion distributions of the three datasets.

Method

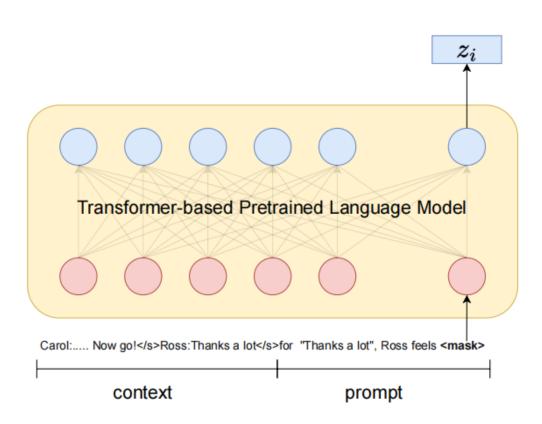


Figure 3: The architecture of our prompt-based context encoder.

all speakers S label set E

$$[(s_1,u_1),(s_2,u_2),\cdots,(s_N,u_N)],$$

$$C_t = [s_{t-k}, u_{t-k}, s_{t-k+1}, ..., s_t, u_t]$$
 (1)

$$P_t = \text{for } u_t, s_t \text{ fells }$$
 (2)

$$H_t^k = \operatorname{SimCSE}(C_t \oplus P_k) \tag{3}$$

the embeddings of the special token <mask> from H_t^k as a representation of y_k -th emotion.

Method

Supervised Contrastive Learning

$$I = [z_1, z_2, \cdots, z_N]$$

$$\mathcal{F}(z_i, z_j) = \exp(\mathcal{G}(z_i, z_j)/\tau) \tag{4}$$

$$\mathcal{N}_{sup}(i) = \sum_{z_j \in A(i)} \mathcal{F}(z_i, z_j)$$
 (5)

$$A(i) \equiv I \setminus \{z_i\}$$

$$\mathcal{P}_{sup}(i) = \sum_{z_p \in P(i)} \mathcal{F}(z_i, z_p)$$
 (6)

$$\mathcal{L}_{i}^{sup} = -\log \frac{1}{|P(i)|} \frac{\mathcal{P}_{sup}(i)}{\mathcal{N}_{sup}(i)}$$
 (7)

Prototypical Contrastive Learning

$$\bar{Q}_i = [z_1^i, z_2^i, \cdots, z_M^i]$$

$$S_K = \text{RANDOMSELECT}(Q_i, K)$$
 (8)

$$\mathbf{T}_{i} = \frac{1}{K} \sum_{z_{j}^{i} \in S_{K}, j \in [1...K]} z_{j}^{i}$$
 (9)

$$\mathcal{N}_{spcl}(i) = \mathcal{N}_{sup}(i) + \sum_{k \in \mathcal{E} \setminus y_i} \mathcal{F}(z_i, \mathbf{T}_k)$$
 (10)

$$\mathcal{P}_{spcl}(i) = \mathcal{P}_{sup}(i) + \mathcal{F}(z_i, \mathbf{T}_{y_i})$$
 (11)

$$\mathcal{L}_{i}^{spcl} = -\log\left(\frac{1}{|P(i)|+1} \cdot \frac{\mathcal{P}_{spcl}(i)}{\mathcal{N}_{spcl}(i)}\right) \quad (12)$$

$$\mathcal{L}^{spcl} = \sum_{i=1}^{N} \mathcal{L}_{i}^{spcl} \tag{13}$$

Method

Curriculum Learning

Let the total size of training set \mathcal{D}_{train} as L_{t}

$$\mathbf{C}_k = \frac{1}{|\{z_j | \forall j, y_j = k\}|} \sum_{j=1}^{L} z_j \cdot \mathbb{I}(y_j = k) \quad (14)$$

$$\mathcal{DIF}(i) = \frac{\operatorname{dis}(z_i, \mathbf{C}_{y_i})}{\sum_{j=1}^{|\mathcal{E}|} \operatorname{dis}(z_i, \mathbf{C}_j)}$$
(15)

$$a_1 = 1 - k/R$$
 and $a_L = k/R$.

hard. Let R as the number of training epochs, to train the model at k-th epoch, we first generate a arithmetic progression a with a length of L, where $a_1 = 1 - k/R$ and $a_L = k/R$. Then we initialize a Bernoulli distribution with a and draw a binary random array R_B from it. We use B to draw a subset \mathcal{D}_{sub-k} from training set for the current epoch, where $\mathcal{D}_{sub-k} \equiv \{x_i \in \mathcal{D}_{train} | R_{Bi} = 1\}$. Ob-

$$p_m^{ic} = \frac{\mathcal{G}(z_i, \mathbf{C}_c)}{\sum_{k=1}^{|\mathcal{E}|} \mathcal{G}(z_i, \mathbf{C}_k)}$$
(16)

$$p_l^i = W \cdot z_i + b \tag{17}$$

$$\mathcal{L}_{CE} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{\mathcal{E}} y_{ic} \cdot \log p_l^{ic} \qquad (18)$$

	MELD	IEMOCAP	EmoryNLP
No.Dials	1,432	151	827
Train	1,038	100	659
Dev	114	20	89
Test	280	31	79
No.Uttrs	13,708	7,333	9,489
Train	9,989	4,810	7,551
Dev	1,109	1,000	954
Test	2,610	1,523	984
No.CLS	7	6	7

Table 2: Statistics of the three datasets.

Models	IEMOCAP	MELD	EmoryNLP
COSMIC(Ghosal et al., 2020)	65.28	65.21	38.11
DialogueCRN (Hu et al., 2021)	66.46	63.42	38.91
DAG-ERC (Shen et al., 2021)	68.03	63.65	39.02
TODKAT (Zhu et al., 2021)	61.33	65.47	38.69
Cog-BART (Li et al., 2021)	66.18	64.81	39.04
TUCORE-GCN_RoBERTa(Lee and Choi, 2021)	-	65.36	39.24
SGED + DAG-ERC(Bao et al., 2022)	68.53	65.46	40.24
EmotonFlow-Large (Song et al., 2022)	-	66.50	-
CoMPM (Lee and Lee, 2021)	69.46	66.52	38.93
SPCL-CL-ERC(Ours)	69.74	$\boldsymbol{67.25}$	40.94

Table 1: Performance comparisons on three datasets.

	IEMOCAP	MELD	EmoryNLP
CE	68.35	65.33	38.72
+ CL	67.40	65.63	39.00
SupCon	68.13	65.67	39.20
+ CL	68.64	66.15	39.49
SPCL	69.03	66.56	40.14
+ CL	69.74	67.25	40.94

Table 3: Results of ablation study. Here, CE means Cross-entropy loss, SupCon is the vanilla supervised contrastive learning loss and SPCL is our proposed supervised prototypical contrastive learning loss. CL is our proposed curriculum strategy.

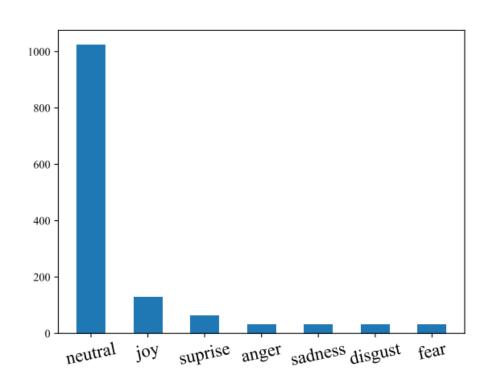


Figure 4: Emotion distribution of the extreme classimbalanced training set. We construct it from MELD training set.

	4	8	16	32
SupCon	53.14	57.36	58.50	60.09
SPCL	57.27	58.85	59.47	61.38

Table 4: Results of different loss functions and different batch sizes trained on the imbalanced training set.

	4	8	16	32
SupCon	62.50	65.01	67.04	68.13
SPCL	68.21	68.41	68.48	69.03

Table 5: Results of SupCon and SPCL with different batch sizes on IEMOCAP dataset.

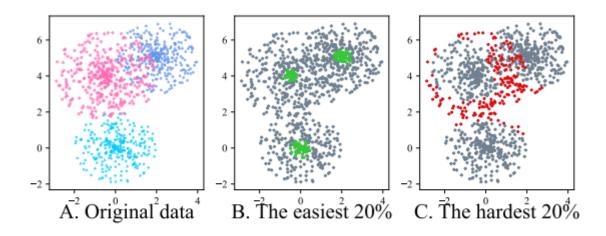


Figure 5: Visualizations of how the difficulty measure function \mathcal{DIF} in Eq.(15) ranks the data.

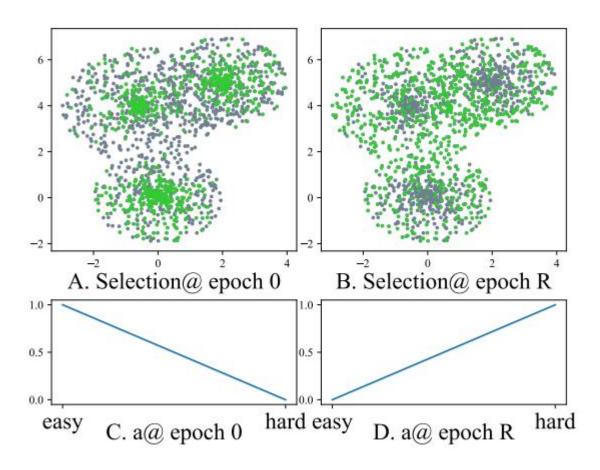


Figure 6: The sampling-based curriculum strategy.

Thank you!

