. 7 ATAI
x@ Chongaing Lhiversity of AT AT

Technology Artificial Intelligence

Supervised Prototypical Contrastive Learning for Emotion
Recognition in Conversation

Xiaohui Song*'*, Longtao Huang*, Hui Xue* and Songlin Hu'*
"nstitute of Information Engineering, Chinese Academy of Sciences
*School of Cyber Security, University of Chinese Academy of Sciences
*Alibaba Group
{songxiaohui,husonglin}@iie.ac.cn, {kaiyang.hlt, hui.xueh}@alibaba-inc.com

2022.11.17 + ChongQing 2022 EMNLP

geS S % Reported by Yidan Liu

Leibniz-Institut ); https://github.com/caskcsg/SPCL

fiir Sozialwissenschaften




ATAI
Advanced Technique of

Artifical Intelligence

1.Introduction
2.Method
3.Experiments




L ATAI
@ Chongging Lhiversity AcvancedTechnioue o

of Techndlagy Adificial Intelligence
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Figure 1: Examples of emotion recognition in conver-
sation. The same utterance "Thanks a lot" can convey
different emotions in different contexts.
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Figure 2: Emotion distributions of the three datasets.
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Existing ERC datasets are often class-imbalanced and
samples may not be able to meet appropriate positive/negative
samples within a mini-batch.

There are some conversations whose textual information
Is insufficient to distinguish emotions.
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Transformer-based Pretrained Language Model

Py = for wu;, sy fells <mask> (2)
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Carol-..... Now gol</s>Ross:Thanks a lot</s>for "Thanks a lot”, Ross feels <mask> Htk — SlmCSE(Ct fan Pk) (3)

context prompt

— [St—ka Ut — s SE—k-I-la eey Sty uf] (1)

: : the embeddings of the special token <mask> from
Figure 3: The architecture of our prompt-based context i _ _
encoder. H;* as a representation of y-th emotion.
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Supervised Contrastive Learning Prototypical Contrastive Learning
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Curriculum Learning
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Ziy Lk

C =k) (14
b= |{z_»,|w v = k) & Z""f ) (49

. L—W-z +b 17

DI,F(%) (;118(2:1, Cyz) (15) P ( )

>IE dis(z, C;)
1 N & ‘
aq =1—k’/R EII]d(IL:k/R *CCEZ_EZZyICIDgPEC (18)

hard. Let R as the number of training epochs, to =1 c=1
train the model at k-th epoch, we first generate a
arithmetic progression a with a length of L, where
ap =1—k/Rand ap = k/R. Then we initialize
a Bernoulli distribution with a and draw a binary
random array R p from it. We use B to draw a sub-
set Dgyp—k from training set for the current epoch,
where Dgyp— = {J?Z < DtraianBi = 1}. Ob-
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Experiment
MELD IEMOCAP EmoryNLP
No.Dials | 1,432 151 827
Train 1,038 100 659
Dev 114 20 89
Test 280 31 79
No.Uttrs | 13,708 7,333 0,489
Train 9,989 4,810 7,551
Dev 1,109 1,000 054
Test 2,610 1,523 084
No.CLS 7 6 7

Table 2: Statistics of the three datasets.
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Models IEMOCAP MELD EmoryNLP
COSMIC(Ghosal et al., 2020) 65.28 65.21 38.11
DialogueCRN (Hu et al., 2021) 66.46 63.42 38.91
DAG-ERC (Shen et al., 2021) 68.03 63.65 39.02
TODKAT (Zhu et al., 2021) 61.33 65.47 38.69
Cog-BART (Liet al., 2021) 66.18 64.81 39.04
TUCORE-GCN_RoBERTa(Lee and Choi, 2021) - 65.36 39.24
SGED + DAG-ERC(Bao et al., 2022) 68.53 65.46 40.24
EmotonFlow-Large (Song et al., 2022) - 66.50 -
CoMPM (Lee and Lee, 2021) 69.46 66.52 38.93
SPCL-CL-ERC(Ours) 69.74 67.25 40.94

Table 1: Performance comparisons on three datasets.
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B O\ | B B | | B |

IEMOCAP| MELD | EmoryNLP
CE 68.35 65.33 38.72
+ CL 67.40 65.63 39.00
SupCon 68.13 65.67 39.20
+ CL 68.64 66.15 39.49
SPCL 69.03 66.56 40.14
+ CL 69.74 67.25 40.94

Table 3: Results of ablation study. Here, CE means
Cross-entropy loss, SupCon is the vanilla supervised
contrastive learning loss and SPCL 1is our proposed su-
pervised prototypical contrastive learning loss. CL is
our proposed curriculum strategy.
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P N\ | B B | | B |

4 8 16 32
SPCL 5727 | 58.385 | 59.47 | 61.38

800

Table 4: Results of different loss functions and different

T batch sizes trained on the imbalanced training set.

400

200 1

B 4 8 16 32
L p- T e s o SupCon | 6250 | 65.01 | 67.04 | 68.13
0 5 s SPCL | 6821 | 6841 | 68.48 | 69.03

Figure 4: Emotion distribution of the extreme class-
imbalanced training set. We construct it from MELD Table 5: Results of SupCon and SPCL with different

training set. batch sizes on IEMOCAP dataset.
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Figure 5: Visualizations of how the difficulty measure
function DZF in Eq.(15) ranks the data.
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